MATH2050B Mathematical Analysis I

Test 1 suggested Solution^{*}

Question 1. (i) Show that if $m, n \in \mathbb{N}$ such that m < n then $m + 1 \leq n$.

(ii) Let $A \subseteq \mathbb{R}$ be oder-convex :

$$\left. \begin{array}{l} a_1 < z < a_2 \\ a_1, a_2 \in A, z \in \mathbb{R} \end{array} \right\} \Rightarrow z \in A$$

Show that if A is not bounded above and is not bounded below then $A = \mathbb{R}$.

(iii) Let $I_n := [a_n, b_n] \subseteq \mathbb{R}, \forall n \in \mathbb{N}$ such that

$$I_{n+1} \subseteq I_n, \quad \forall n \in \mathbb{N}.$$

Using axioms of \mathbb{R} show that $\bigcap_{n \in \mathbb{N}} I_n \neq \emptyset$. Show further that the intersection is a singleton if $\lim_n (b_n - a_n) = 0.$

Solution:

(i) Let

$$\mathbb{N}_m = \{1, 2, \cdots m\} \cup \{m + K : K \in \mathbb{N}\},\$$

which is seen to be an inductive subset of \mathbb{N} so equals \mathbb{N} . Since *n* is strictly large than *m*, we have $n \in \{m + K : K \in \mathbb{N}\}$, which implies that $n \ge m + 1$.

(ii) Suppose A is not bounded above and not bounded below. Let $x \in \mathbb{R}$. Then x is not a lower bound of A, so there exists $a_1 \in A$ such that $a_1 < x$. Similarly, since x is not an upper bound of A, there exists $a_2 \in A$ such that $a_2 > x$. It follows that $x \in A$ due to the fact that A is oder-convex. Thus we have $\mathbb{R} \subseteq A$. On the assumption that $A \subseteq \mathbb{R}$, we conclude that $A = \mathbb{R}$.

(iii) Since $I_{n+1} \subseteq I_n$ for all $n \in \mathbb{N}$, we have

$$a_1 \leq a_2 \leq \ldots \leq a_n \leq b_n \leq \ldots \leq b_2 \leq b_1.$$

Notice that both $\{a_n\}$ and $\{b_n\}$ are bounded below by a_1 and above by b_1 . By completeness axiom of \mathbb{R} , we can define $a = \sup_n \{a_n\}$ and $b = \inf_n \{b_n\}$. It follows that $a \leq b$, due to the fact that $a_n \leq b_n$ for all $n \in \mathbb{N}$. We see at once that $[a, b] \neq \emptyset$.

^{*}please kindly send an email to cyma@math.cuhk.edu.hk if you have any question.

Next we show that $[a, b] = \bigcap_n [a_n, b_n]$. If $x \in [a, b]$, then $a_n \leq a \leq x$ for all n, since a is an upper bound of $\{a_n\}$, and similarly we get $x \leq b_n$ for all $n \in \mathbb{N}$. Hence that $x \in \bigcap_n [a_n, b_n]$.

Conversely, suppose $x \in \bigcap_n [a_n, b_n]$. Then we have $a_n \leq x \leq b_n$ for all n. Thus x is an upper bound of $\{a_n\}$, and $a \leq x$ (as a being the smallest upper bound of $\{a_n\}$). By a similar argument, we can see that $x \leq b$, so $x \in [a, b]$. Therefore we can conclude that $[a, b] = \bigcap_n [a_n, b_n]$.

Suppose additionally that $\lim_{n} (b_n - a_n) = 0$. Then for any $\epsilon > 0$, pick $N \in \mathbb{N}$ such that $b_N - a_N < \epsilon$. It follows from the preceding paragraph that $b - a \leq b_N - a_N < \epsilon$. Since ϵ is arbitrary, we have b - a = 0, and $\{a\} = \{b\} = \bigcap_n [a_n, b_n]$.

Question 2. (Not to use on any theorem (limits)) In the terminology of $\varepsilon - N$, show that

(i) If $\lim_n x_n = 3$ and $\lim_n y_n = -2$ then

$$\lim_{n} (x_n y_n) = -6 \quad \text{and} \\ \lim_{n} \frac{x_n^2 + 3}{x_n - 2} = 12.$$

(ii) If $\lim_{n \to \infty} z_n = l \in \mathbb{R}$ and $z_n \ge 0, \forall n \in \mathbb{N}$ then $l \ge 0$ and $\lim_{n \to \infty} \sqrt{z_n} = \sqrt{l}$.

Solution:

(i) Fix $\epsilon > 0$. Since $\lim_n x_n = 3$, there exists $N_1(\epsilon) \in \mathbb{N}$ such that for any $n \ge N_1(\epsilon)$, we have $|x_n - 3| < \frac{\epsilon}{6}$. Similarly, since $\lim_n y_n = -2$, there exists $N_2(\epsilon) \in \mathbb{N}$ such that for any $n \ge N_2(\epsilon)$,

$$|y_n - (-2)| < 1$$
 and $|y_n - (-2)| < \frac{\epsilon}{6}$,

which implies that for all $n \ge N_2(\epsilon)$,

$$|y_n| < 3 \text{ and } |y_n - (-2)| < \frac{\epsilon}{6}$$

Let $N(\epsilon) = \max\{N_1(\epsilon), N_2(\epsilon)\}$, it follows that for any $n \ge N(\epsilon)$,

$$|x_n y_n - (-6)| = |x_n y_n - 3y_n + 3y_n - (-6)|$$

$$\leq |x_n y_n - 3y_n| + |3y_n - (-6)|$$

$$\leq |y_n| \cdot |x_n - 3| + 3|y_n + 2|$$

$$\leq 3 \cdot \frac{\epsilon}{6} + 3 \cdot \frac{\epsilon}{6}$$

$$= \epsilon$$

which yields that $\lim_{n} (x_n y_n) = -6$.

Next we show that $\lim_n \frac{x_n^2 + 3}{x_n - 2} = 12.$

Since $\lim_n x_n = 3$, there exists $N_1 \in \mathbb{N}$ such that for any $n \ge N_1$,

$$|x_n - 3| < \frac{1}{2}$$
 i.e. $\frac{5}{2} < x_n < \frac{7}{2}$

which implies that $x_n - 2 > \frac{1}{2}$ and $|x_n| < \frac{7}{2}$.

Fix $\epsilon > 0$. Since $\lim_n x_n = 3$, there exists $N_2(\epsilon) \in \mathbb{N}$ such that for any $n \ge N_2(\epsilon)$,

$$|x_n - 3| < \frac{\epsilon}{25}.$$

Let $N(\epsilon) = \max\{N_1, N_2(\epsilon)\}$. Then for any $n \ge N(\epsilon)$,

$$\frac{x_n^2 + 3}{x_n - 2} - 12 \bigg| = \bigg| \frac{x_n^2 - 12x_n + 27}{x_n - 2} \bigg|$$
$$= \bigg| \frac{(x_n - 3)(x_n - 9)}{x_n - 2} \bigg|$$
$$\leq 2|x_n - 3|(|x_n| + 9)$$
$$\leq 2\frac{\epsilon}{25} \cdot \frac{25}{2}$$
$$= \epsilon,$$

that is, $\lim_{n} \frac{x_n^2 + 3}{x_n - 2} = 12.$

(ii) We first show that $\ell \ge 0$. Suppose on the contrary that $\ell < 0$. Since $\lim_n z_n = \ell$, there exists $N \in \mathbb{N}$ so that for any $n \ge N$, we have $|z_n - \ell| < \frac{|\ell|}{2}$, which yields that $z_n < \ell + \frac{|\ell|}{2} < 0$. This contracts with the assumption.

Next we show that $\lim_{n \to \infty} \sqrt{z_n} = \sqrt{\ell}$.

Case 1:

$$|z_n| < \epsilon^2$$
 i.e. $|\sqrt{z_n}| < \epsilon$,

which yields that $\lim_{n} \sqrt{z_n} = 0$.

Case 2: $\lim_{n} z_n = \ell > 0$. For any $\epsilon > 0$ there exists $N_2(\epsilon) \in \mathbb{N}$ so that for any $n \ge N_2(\epsilon)$,

$$-\frac{\ell}{2} < z_n - \ell < \frac{\ell}{2}$$
 and $|z_n - \ell| < \frac{3\sqrt{\ell}}{2}\epsilon$,

which also implies that $|z_n| > \frac{\ell}{4}$ since $\ell > 0$.

Thus for any $n \ge N_2(\epsilon)$,

$$\left|\sqrt{z_n} - \sqrt{\ell}\right| = \left|\frac{z_n - \ell}{\sqrt{z_n} + \sqrt{\ell}}\right| < \left|\frac{z_n - \ell}{\sqrt{\ell}/2 + \sqrt{\ell}}\right| = \frac{2}{3\sqrt{\ell}}|z_n - \ell| < \frac{2}{3\sqrt{\ell}}\frac{3\sqrt{\ell}}{2}\epsilon = \epsilon.$$

Therefore we have $\lim_{n \to \infty} \sqrt{z_n} = \sqrt{\ell}$.

Question 3. State (without proof) the Bolzano-Weierstrass Theorem and hence show that a sequence (x_n) is convergent if it is Cauchy.

Solution:

Bolzano-Weierstrass Theorem: A bounded sequence of real numbers has a convergent subsequence.

Now we show that if $\{x_n\}$ is a Cauchy sequence, then $\{x_n\}$ is bounded. Since $\{x_n\}$ is Cauchy, there exists $N \in \mathbb{N}$, such that for any $n \ge N$,

$$|x_n - x_N| \le 1,$$

that is, $x_N - 1 \le x_n \le x_N + 1$ for any $n \ge N$. Denote $a = \min\{x_1, \ldots, x_{N-1}, x_N, x_N - 1\}$ and $b = \max\{x_1, \ldots, x_{N-1}, x_N, x_N + 1\}$, it is clear that $\{x_n\}$ is bounded below by a and bounded above by b.

It follows from Bolzano-Werierstrass Theorem that there exists a convergent subsequence $\{x_{n_k}\}$. Suppose $\lim_{k\to\infty} x_{n_k} = x$. Fix $\epsilon > 0$, there exists $k_1 \in \mathbb{N}$ such that for any $k \ge k_1$,

$$|x_{n_k} - x| < \frac{\epsilon}{2}$$

On the other hand, since $\{x_n\}$ is Cauchy, there is $N_1 \in \mathbb{N}$ so that for any $m, n \geq N_1$,

$$|x_m - x_n| < \frac{\epsilon}{2}.$$

Note that $\{n_k\}_k$ is an increasing sequence tending to infinity, there exists $k_2 \ge k_1$ such that $n_k \ge N_1$ for all $k \ge k_2$.

Denote $N_2 = n_{k_2}$, then for any $m \ge N_2$, we have

$$|x_m - x| < |x_m - x_{n_{k_2}}| + |x_{n_{k_2}} - x| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

This shows that $\lim_{n \to \infty} x_n = x$.