MATH2050B Mathematical Analysis I

Test 1 suggested Solution[∗]

Question 1. (i) Show that if *m*, $n \in \mathbb{N}$ such that $m < n$ then $m + 1 \leq n$.

(ii) Let $A \subseteq \mathbb{R}$ be oder-convex :

$$
\begin{aligned}\na_1 &< z < a_2 \\
a_1, a_2 &\in A, z \in \mathbb{R}\n\end{aligned}\n\Rightarrow z \in A.
$$

Show that if *A* is not bounded above and is not bounded below then $A = \mathbb{R}$.

(iii) Let $I_n := [a_n, b_n] \subseteq \mathbb{R}, \forall n \in \mathbb{N}$ such that

$$
I_{n+1} \subseteq I_n, \quad \forall n \in \mathbb{N}.
$$

Using axioms of R show that $\bigcap_{n\in\mathbb{N}} I_n \neq \emptyset$. Show further that the intersection is a singleton if $\lim_{n}(b_{n}-a_{n})=0.$

Solution:

(i) Let

$$
\mathbb{N}_m = \{1, 2, \cdots m\} \cup \{m + K : K \in \mathbb{N}\},\
$$

which is seen to be an inductive subset of $\mathbb N$ so equals $\mathbb N$. Since *n* is strictly large than *m*, we have $n \in \{m + K : K \in \mathbb{N}\},\$ which implies that $n \geq m + 1$.

(ii) Suppose *A* is not bounded above and not bounded below. Let $x \in \mathbb{R}$. Then *x* is not a lower bound of *A*, so there exists $a_1 \in A$ such that $a_1 < x$. Similarly, since *x* is not an upper bound of *A*, there exists $a_2 \in A$ such that $a_2 > x$. It follows that $x \in A$ due to the fact that *A* is oder-convex. Thus we have $\mathbb{R} \subseteq A$. On the assumption that $A \subseteq \mathbb{R}$, we conclude that $A = \mathbb{R}$.

(iii) Since $I_{n+1} \subseteq I_n$ for all $n \in \mathbb{N}$, we have

$$
a_1 \le a_2 \le \ldots \le a_n \le b_n \le \ldots \le b_2 \le b_1.
$$

Notice that both $\{a_n\}$ and $\{b_n\}$ are bounded below by a_1 and above by b_1 . By completeness axiom of R, we can define $a = \sup_n \{a_n\}$ and $b = \inf_n \{b_n\}$. It follows that $a \leq b$, due to the fact that $a_n \leq b_n$ for all $n \in \mathbb{N}$. We see at once that $[a, b] \neq \emptyset$.

[∗]please kindly send an email to cyma@math.cuhk.edu.hk if you have any question.

Next we show that $[a, b] = \bigcap_n [a_n, b_n]$. If $x \in [a, b]$, then $a_n \leq a \leq x$ for all *n*, since *a* is an upper bound of $\{a_n\}$, and similarly we get $x \leq b_n$ for all $n \in \mathbb{N}$. Hence that $x \in \bigcap_n [a_n, b_n]$.

Conversely, suppose $x \in \bigcap_n [a_n, b_n]$. Then we have $a_n \leq x \leq b_n$ for all *n*. Thus *x* is an upper bound of $\{a_n\}$, and $a \leq x$ (as *a* being the smallest upper bound of $\{a_n\}$). By a similar argument, we can see that $x \leq b$, so $x \in [a, b]$. Therefore we can conclude that $[a, b] = \bigcap_n [a_n, b_n]$.

Suppose additionally that $\lim_{n} (b_n - a_n) = 0$. Then for any $\epsilon > 0$, pick $N \in \mathbb{N}$ such that $b_N - a_N < \epsilon$. It follows from the preceding paragraph that $b - a \leq b_N - a_N < \epsilon$. Since ϵ is arbitrary, we have *b* − *a* = 0, and $\{a\} = \{b\} = \bigcap_n [a_n, b_n].$

Question 2. *(Not to use on any theorem (limits))* In the terminology of $\varepsilon - N$, show that

(i) If $\lim_{n} x_n = 3$ and $\lim_{n} y_n = -2$ then

$$
\lim_{n} (x_n y_n) = -6
$$
 and
\n $\lim_{n} \frac{x_n^2 + 3}{x_n - 2} = 12.$

(ii) If $\lim_{n} z_n = l \in \mathbb{R}$ and $z_n \geqslant 0, \forall n \in \mathbb{N}$ then $l \geqslant 0$ and $\lim_{n} \sqrt{z_n} =$ *√ l.*

Solution:

(i) Fix $\epsilon > 0$. Since $\lim_{n} x_n = 3$, there exists $N_1(\epsilon) \in \mathbb{N}$ such that for any $n \geq N_1(\epsilon)$, we have $|x_n-3|<\frac{\epsilon}{c}$ $\frac{1}{6}$. Similarly, since $\lim_{n} y_n = -2$, there exists $N_2(\epsilon) \in \mathbb{N}$ such that for any $n \geq N_2(\epsilon)$,

$$
|y_n - (-2)| < 1
$$
 and $|y_n - (-2)| < \frac{\epsilon}{6}$,

which implies that for all $n \geq N_2(\epsilon)$,

$$
|y_n| < 3 \text{ and } |y_n - (-2)| < \frac{\epsilon}{6}.
$$

Let $N(\epsilon) = \max\{N_1(\epsilon), N_2(\epsilon)\}\$, it follows that for any $n \ge N(\epsilon)$,

$$
|x_n y_n - (-6)| = |x_n y_n - 3y_n + 3y_n - (-6)|
$$

\n
$$
\le |x_n y_n - 3y_n| + |3y_n - (-6)|
$$

\n
$$
\le |y_n| \cdot |x_n - 3| + 3|y_n + 2|
$$

\n
$$
\le 3 \cdot \frac{\epsilon}{6} + 3 \cdot \frac{\epsilon}{6}
$$

\n
$$
= \epsilon,
$$

which yields that $\lim_{n} (x_n y_n) = -6$.

Next we show that $\lim_{n} \frac{x_n^2 + 3}{n}$ $\frac{x_n - 3}{x_n - 2} = 12.$ Since $\lim_{n} x_n = 3$, there exists $N_1 \in \mathbb{N}$ such that for any $n \geq N_1$,

$$
|x_n - 3| < \frac{1}{2}
$$
 i.e. $\frac{5}{2} < x_n < \frac{7}{2}$,

which implies that $x_n - 2 > \frac{1}{2}$ and $|x_n| < \frac{7}{2}$.

Fix $\epsilon > 0$. Since $\lim_{n} x_n = 3$, there exists $N_2(\epsilon) \in \mathbb{N}$ such that for any $n \geq N_2(\epsilon)$,

$$
|x_n - 3| < \frac{\epsilon}{25}.
$$

Let $N(\epsilon) = \max\{N_1, N_2(\epsilon)\}\$. Then for any $n \geq N(\epsilon)$,

 $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$

$$
\left| \frac{x_n^2 + 3}{x_n - 2} - 12 \right| = \left| \frac{x_n^2 - 12x_n + 27}{x_n - 2} \right|
$$

$$
= \left| \frac{(x_n - 3)(x_n - 9)}{x_n - 2} \right|
$$

$$
\leq 2|x_n - 3|(|x_n| + 9)
$$

$$
\leq 2\frac{\epsilon}{25} \cdot \frac{25}{2}
$$

$$
= \epsilon,
$$

that is, $\lim_{n} \frac{x_n^2 + 3}{n}$ $\frac{x_n - 6}{x_n - 2} = 12.$

(ii) We first show that $\ell \geq 0$. Suppose on the contrary that $\ell < 0$. Since $\lim_{n} z_n = \ell$, there exists $N \in \mathbb{N}$ so that for any $n \geq N$, we have $|z_n - \ell| < \frac{|\ell|}{2}$ $\frac{\ell}{2}$, which yields that $z_n < \ell + \frac{|\ell|}{2}$ $\frac{z_1}{2}$ < 0. This contracts with the assumption.

Next we show that $\lim_{n} \sqrt{z_n} =$ *√ ℓ.*

Case 1:

$$
|z_n| < \epsilon^2 \quad \text{i.e.} \quad |\sqrt{z_n}| < \epsilon,
$$

which yields that $\lim_{n} \sqrt{z_n} = 0$.

Case 2: $\lim_{n} z_n = \ell > 0$. For any $\epsilon > 0$ there exists $N_2(\epsilon) \in \mathbb{N}$ so that for any $n \geq N_2(\epsilon)$,

$$
-\frac{\ell}{2} < z_n - \ell < \frac{\ell}{2} \quad \text{ and } \quad |z_n - \ell| < \frac{3\sqrt{\ell}}{2}\epsilon,
$$

which also implies that $|z_n| > \frac{\ell}{4}$ since $\ell > 0$.

Thus for any $n \geq N_2(\epsilon)$,

$$
|\sqrt{z_n} - \sqrt{\ell}| = \left| \frac{z_n - \ell}{\sqrt{z_n} + \sqrt{\ell}} \right| < \left| \frac{z_n - \ell}{\sqrt{\ell}/2 + \sqrt{\ell}} \right| = \frac{2}{3\sqrt{\ell}} |z_n - \ell| < \frac{2}{3\sqrt{\ell}} \frac{3\sqrt{\ell}}{2} \epsilon = \epsilon.
$$

Therefore we have $\lim_{n} \sqrt{z_n} =$ *√ ℓ.*

Question 3. State (without proof) the Bolzano-Weierstrass Theorem and hence show that a sequence (x_n) is convergent if it is Cauchy.

Solution:

Bolzano-Weierstrass Theorem: A bounded sequence of real numbers has a convergent subsequence.

Now we show that if $\{x_n\}$ is a Cauchy sequence, then $\{x_n\}$ is bounded. Since $\{x_n\}$ is Cauchy, there exists $N \in \mathbb{N}$, such that for any $n \geq N$,

$$
|x_n - x_N| \le 1,
$$

that is, $x_N - 1 \le x_n \le x_N + 1$ for any $n \ge N$. Denote $a = \min\{x_1, \ldots, x_{N-1}, x_N, x_N - 1\}$ and $b = \max\{x_1, \ldots, x_{N-1}, x_N, x_N + 1\}$, it is clear that $\{x_n\}$ is bounded below by *a* and bounded above by *b.*

It follows from Bolzano-Werierstrass Theorem that there exists a convergent subsequence $\{x_{n_k}\}$. Suppose lim $\lim_{k \to \infty} x_{n_k} = x$. Fix $\epsilon > 0$, there exists $k_1 \in \mathbb{N}$ such that for any $k \geq k_1$,

$$
|x_{n_k} - x| < \frac{\epsilon}{2}
$$

.

On the other hand, since $\{x_n\}$ is Cauchy, there is $N_1 \in \mathbb{N}$ so that for any $m, n \geq N_1$,

$$
|x_m - x_n| < \frac{\epsilon}{2}.
$$

Note that ${n_k}_k$ is an increasing sequence tending to infinity, there exists $k_2 \geq k_1$ such that $n_k \geq N_1$ for all $k \geq k_2$.

Denote $N_2 = n_{k_2}$, then for any $m \geq N_2$, we have

$$
|x_m - x| < |x_m - x_{n_{k_2}}| + |x_{n_{k_2}} - x| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.
$$

This shows that $\lim_{n\to\infty} x_n = x$.