
MATH2050B Mathematical Analysis I

Test 1 suggested Solution∗

Question 1. (i) Show that if m, n ∈ N such that m < n then m+ 1 ⩽ n.

(ii) Let A ⊆ R be oder-convex :

a1 < z < a2
a1, a2 ∈ A, z ∈ R

}
⇒ z ∈ A.

Show that if A is not bounded above and is not bounded below then A = R.

(iii) Let In := [an, bn] ⊆ R,∀n ∈ N such that

In+1 ⊆ In, ∀n ∈ N.

Using axioms of R show that
⋂

n∈N In ̸= ∅. Show further that the intersection is a singleton if
lim
n
(bn − an) = 0.

Solution:

(i) Let
Nm ={1, 2, · · ·m} ∪ {m+K : K ∈ N},

which is seen to be an inductive subset of N so equals N. Since n is strictly large than m, we have
n ∈ {m+K : K ∈ N}, which implies that n ≥ m+ 1.

(ii) Suppose A is not bounded above and not bounded below. Let x ∈ R. Then x is not a lower
bound of A, so there exists a1 ∈ A such that a1 < x. Similarly, since x is not an upper bound of A,
there exists a2 ∈ A such that a2 > x. It follows that x ∈ A due to the fact that A is oder-convex.
Thus we have R ⊆ A. On the assumption that A ⊆ R, we conclude that A = R.

(iii) Since In+1 ⊆ In for all n ∈ N, we have

a1 ≤ a2 ≤ . . . ≤ an ≤ bn ≤ . . . ≤ b2 ≤ b1.

Notice that both {an} and {bn} are bounded below by a1 and above by b1. By completeness axiom
of R, we can define a = sup

n
{an} and b = inf

n
{bn}. It follows that a ≤ b, due to the fact that an ≤ bn

for all n ∈ N. We see at once that [a, b] ̸= ∅.
∗please kindly send an email to cyma@math.cuhk.edu.hk if you have any question.
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Next we show that [a, b] =
⋂

n[an, bn]. If x ∈ [a, b], then an ⩽ a ⩽ x for all n, since a is an upper
bound of {an}, and similarly we get x ≤ bn for all n ∈ N. Hence that x ∈

⋂
n[an, bn].

Conversely, suppose x ∈
⋂

n[an, bn]. Then we have an ≤ x ≤ bn for all n. Thus x is an upper
bound of {an}, and a ≤ x (as a being the smallest upper bound of {an}). By a similar argument,
we can see that x ≤ b, so x ∈ [a, b]. Therefore we can conclude that [a, b] =

⋂
n[an, bn].

Suppose additionally that lim
n
(bn−an) = 0. Then for any ϵ > 0, pick N ∈ N such that bN−aN < ϵ.

It follows from the preceding paragraph that b − a ≤ bN − aN < ϵ. Since ϵ is arbitrary, we have
b− a = 0, and {a} = {b} =

⋂
n[an, bn].

Question 2. (Not to use on any theorem (limits)) In the terminology of ε−N , show that

(i) If limn xn = 3 and limn yn = −2 then

limn (xnyn) = −6 and

limn
x2
n + 3

xn − 2
= 12.

(ii) If limn zn = l ∈ R and zn ⩾ 0,∀n ∈ N then l ⩾ 0 and limn
√
zn =

√
l.

Solution:

(i) Fix ϵ > 0. Since limn xn = 3, there exists N1(ϵ) ∈ N such that for any n ≥ N1(ϵ), we have
|xn − 3| < ϵ

6
. Similarly, since limn yn = −2, there exists N2(ϵ) ∈ N such that for any n ≥ N2(ϵ),

|yn − (−2)| < 1 and |yn − (−2)| < ϵ

6
,

which implies that for all n ≥ N2(ϵ),

|yn| < 3 and |yn − (−2)| < ϵ

6
.

Let N(ϵ) = max{N1(ϵ), N2(ϵ)}, it follows that for any n ≥ N(ϵ),

|xnyn − (−6)| = |xnyn − 3yn + 3yn − (−6)|

≤ |xnyn − 3yn|+ |3yn − (−6)|

≤ |yn| · |xn − 3|+ 3|yn + 2|

≤ 3 · ϵ
6
+ 3 · ϵ

6
= ϵ,

which yields that limn (xnyn) = −6.

Next we show that limn
x2
n + 3

xn − 2
= 12.
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Since limn xn = 3, there exists N1 ∈ N such that for any n ≥ N1,

|xn − 3| < 1

2
i.e. 5

2
< xn <

7

2
,

which implies that xn − 2 > 1
2 and |xn| < 7

2 .

Fix ϵ > 0. Since limn xn = 3, there exists N2(ϵ) ∈ N such that for any n ≥ N2(ϵ),

|xn − 3| < ϵ

25
.

Let N(ϵ) = max{N1, N2(ϵ)}. Then for any n ≥ N(ϵ),∣∣∣∣x2
n + 3

xn − 2
− 12

∣∣∣∣ = ∣∣∣∣x2
n − 12xn + 27

xn − 2

∣∣∣∣
=

∣∣∣∣ (xn − 3)(xn − 9)

xn − 2

∣∣∣∣
≤ 2|xn − 3|(|xn|+ 9)

≤ 2
ϵ

25
· 25
2

= ϵ,

that is, limn
x2
n + 3

xn − 2
= 12.

(ii) We first show that ℓ ≥ 0. Suppose on the contrary that ℓ < 0. Since limn zn = ℓ, there

exists N ∈ N so that for any n ≥ N, we have |zn − ℓ| < |ℓ|
2

, which yields that zn < ℓ+
|ℓ|
2

< 0. This
contracts with the assumption.

Next we show that limn
√
zn =

√
ℓ.

Case 1:
|zn| < ϵ2 i.e. |

√
zn| < ϵ,

which yields that limn
√
zn = 0.

Case 2: limn zn = ℓ > 0. For any ϵ > 0 there exists N2(ϵ) ∈ N so that for any n ≥ N2(ϵ),

− ℓ

2
< zn − ℓ <

ℓ

2
and |zn − ℓ| < 3

√
ℓ

2
ϵ,

which also implies that |zn| > ℓ
4 since ℓ > 0.

Thus for any n ≥ N2(ϵ),

|
√
zn −

√
ℓ| =

∣∣∣∣∣ zn − ℓ
√
zn +

√
ℓ

∣∣∣∣∣ <
∣∣∣∣ zn − ℓ√

ℓ/2 +
√
ℓ

∣∣∣∣ = 2

3
√
ℓ
|zn − ℓ| < 2

3
√
ℓ

3
√
ℓ

2
ϵ = ϵ.

Therefore we have limn
√
zn =

√
ℓ.
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Question 3. State (without proof) the Bolzano-Weierstrass Theorem and hence show that a
sequence (xn) is convergent if it is Cauchy.

Solution:

Bolzano-Weierstrass Theorem: A bounded sequence of real numbers has a convergent sub-
sequence.

Now we show that if {xn} is a Cauchy sequence, then {xn} is bounded. Since {xn} is Cauchy,
there exists N ∈ N, such that for any n ≥ N,

|xn − xN | ≤ 1,

that is, xN − 1 ≤ xn ≤ xN + 1 for any n ≥ N. Denote a = min{x1, . . . , xN−1, xN , xN − 1} and
b = max{x1, . . . , xN−1, xN , xN +1}, it is clear that {xn} is bounded below by a and bounded above
by b.

It follows from Bolzano-Werierstrass Theorem that there exists a convergent subsequence {xnk
}.

Suppose lim
k→∞

xnk
= x. Fix ϵ > 0, there exists k1 ∈ N such that for any k ≥ k1,

|xnk
− x| < ϵ

2
.

On the other hand, since {xn} is Cauchy, there is N1 ∈ N so that for any m,n ≥ N1,

|xm − xn| <
ϵ

2
.

Note that {nk}k is an increasing sequence tending to infinity, there exists k2 ≥ k1 such that nk ≥ N1

for all k ≥ k2.

Denote N2 = nk2 , then for any m ≥ N2, we have

|xm − x| < |xm − xnk2
|+ |xnk2

− x| < ϵ

2
+

ϵ

2
= ϵ.

This shows that lim
n→∞

xn = x.
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